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Three-dimensional wings in hypersonic flow 
By R.HILLIER 

Engineering Department, Cambridge University? 

(Received 24 March 1972) 

Messiter’s thin shock layer approximation for hypersonic wings is applied to  
several non-conical shapes. Two calculation methods are considered. One gives 
the exact solution for a particular three-dimensional geometry which possesses 
a conical planform and also a conical distribution of thickness superimposed 
upon a surface cambered in the chordwise direction. Agreement with experiment 
is good for all cases, including that where the wing is yawed. The other method is 
a more general approach whereby the solution is expressed as a correction to an 
already known conical flow. Such a technique is applicable to conical planforms 
with either attached or detached shocks but only to the non-conical planform for 
the region in the vicinity of the leading edge when the shock is attached. 

1. Introduction 
In recent years there has been considerable interest in predicting the flow 

around lifting bodies at high supersonic or hypersonic speeds and in consequence 
a variety of calculation methods have been developed. These have generally been 
discussed in detail in the literature (see, for example, Hayes & Probstein (1966) 
and also Analytical Methods in Aircraft Design, N.A.S.A. SP-228) and the purpose 
of this paper is to  present further developments of one particular theory, the 
so-called thin shock layer approximation. 

This theory studies the case where the shock lies very close to the body surface; 
under such conditions the flow variables in the intervening shock layer may be 
written as series expansions in terms of some appropriate hypersonic parameter 
or parameters which, in their turn, are a measure of the thinness of the layer. 
The zeroth-order terms of these series then give the well-known basic Newtonian 
results, modified possibly by the Busemann correction for body curvature. The 
theory has been extensively applied to the blunt body case and, again, this is 
reviewed by Hayes & Probstein. The earliest applications of direct relevance to 
hypersonic wings were those due to Cole & Brainerd (1962) and also to Antonov & 
Hayes (1966), who effectively studied the problem of slender wings a t  very high 
incidences. The flow in the cross-plane is the dominant factor in this case and 
chordwise variations are neglected. Generally such variations are important, 
however, and this case was originally studied by Messiter (1963), who derived a 
set of approximate equations of motion subject to certain limitations on the body 
geometry. First, it must correspond to that of what Hayes & Probstein term a 
blunt-faced body, i.e. a nearly planar compression surface generating the shock 
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such that one angle of attack typifies the incidence of every element of the body 
surface. Second, only the flow over the compression suface can be considered by 
the theory. This side is separated by the trace of a sharp leading edge from the 
suction surface, which is itself assumed to be at vacuum conditions or, rather, 
it is assumed that the pressure is sufficiently low not to interfere with the flow 
over the compression side. The wing has a sharp vertex, a t  which the shock is 
attached, although it may be either attached or detached along the leading 
edges. It is this second condition, and not that at the vertex, which is implied by 
the terms attached or detached shocks in this work. 

Only one hypersonic or perturbation parameter is required in Messiter’s 
formulation. This is E ,  a quantity defining the density ratio across a plane shock 
lying at the same incidence o: as the wing. Messiter specialized the approximate 
equations to the conical case and produced limited results for the lifting flat 
delta wing with a detached shock. This work was then followed by that of Hida 
(1965), who made an approximate allowance for wing thickness, and also of 
Squire (1966, 1968a), who obtained exact numerical solutions to the governing 
equations for the flow, with detached shocks, over conical wings with flat, 
diamond and caret (inverted ‘V ’) cross-sections to  the compression surfaces. 
These all showed excellent agreement with experiment, as did also the work by 
Hillier (1970a, b ) ,  who extended the analysis to include the effects of yaw upon 
wings with flat, convex and concave compression surfaces. In  four further papers 
Squire (1968b), Woods (1970) and Roe (1970, 1971) a.11 considered conical flows 
For the attached shock case: again showing good agreement with the limited 
experimental results and exact solutions available. 

The main feature of the conical problem is that the perturbation w in the cross- 
flow velocity (from the basic Newtonian value) is constant on a conical stream 
surface 7 (say) and that the function w(7) is itself related to the body geometry by 
a complicated integral equation. The above papers were all essentially concerned 
with the solution of this equalion. Once w(7) is known the evaluation of the other 
flow properties is straightforward although complicated algebraically. 

The purpose of the present work is to present some extensions of the theory to 
non-conical wings; however, since the analysis depends to  a large extent upon 
results derived for the coniaal case, and since the reader may not be fully 
acquainted with these, the relevant work is reviewed in the earlier parts of the 
text. The full analysis may therefore be followed without recourse to the quoted 
literature, apart from the more detailed points. 

Two main classes of wing become apparent in the three-dimensional analysis, 
depending upon whether the wing planform is conical or not, but with no apparent 
limitation upon the actual form of the thickness distribution. The non-conical 
planform has not proved readily amenable to analysis and, as yet, the method 
only holds for the region in the vicinity of a curved leading edge with an attached 
shock. However, the conical -planform is not limited to the attached shock case 
and several important results have been derived. The first is an exact solution for 
the simply cambered bodies, defined as those possessing a conical distribution of 
thickness superimposed upon a surface cambered in the chordwise direction. 
This result includes the effects of yaw and shows good agreement with experiment. 
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No exact solution has been derived for any other three-dimensional body but 
such cases may be studied by a perturbation technique whereby the flow variables 
are expanded further as a series in x, the chordwise distance from the vertex. The 
solution at the vertex, i.e. the fist term ofthe series, is then a conical result, which 
is assumed to be already known. Each higher correction depends upon the appro- 
priate perturbation in the cross-flow velocity and this, in turn, is related to the 
perturbation in the body geometry by an integral equation, similar to the one 
obtained for the conical case itself. Only the analysis for the first correction is 
given in full since it in fact typifies the technique for all higher corrections. 
Agreement with experiment is variable for this approach. The centre-line pressure 
on the unyawed wing, which is in fact given exactly by the theory, and also the 
pressure a t  the leading edge for an attached shock compare well. However, the 
calculated pressure on the outer half of the wing span, for the one available com- 
parison with a detached shock case, shows disappointing agreement in view of 
the generally excellent results: expected from the earlier work for the conical case. 

2. Derivation of the thin shock layer equations 
The thin shock layer equations have been presented in several of the references. 

However, the full three-dimensional equations for a yawed wing are rederived 
here for completeness since they serve as a useful introduction to the present 
work and also constitute the basis of any attempt to calculate higher order 
corrections. 

Figure 1 shows a uniform supersonic stream with speed urn and Mach number 
M, impinging upon a wing of arbitrary shape at  an angle of incidence a and an 
angle of yaw /?. The vertex of the wing is at  the origin, i.e. at  ?i = = f = 0, and 
the plane ij = 0 is coincident with the plane of the wing’s leading edges at  the 
vertex. The angle of incidence a is also measured with respect to  this plane as 
indicated in the figure. 

The purpose of this section is to derive a consistent system of approximate 
equations of motion and boundary conditions from the exact equations of fluid 
motion; these give the following equations for the steady flow of an ideal inviscid 
gas. 

Continuity: 

Momentum : q.vq+(l/p)vz, = 0. (2 .2 )  

Entropy : q.V(p/p)  = 0. (2.3) 

The overbar indicates quantities evaluated in the physical plane, as opposed t o  
the transformed planes which will be used later. The above equations must be 
evaluated subject both to the body surface boundary conditions and also to  the 
Rankine-Hugoniot conditions at the shock. The first requires that streamlines 
eventually become tangential to  the body surface and is expressed by 

q B . i i B = O  on ij=q,, (2.4). 

where ii, is the unit vector normal to the body and qB is the velocity vector 
evaluated on the surface; the subscript B refera to  the body surface. 

20-2 
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FIGURE 1. Nomendaturo for yawed wing (b  = cot 8, F, = cot 4). 

The jump conditions at the shock give the following conditions. 

Continuity : [jqq..iiS)] = 0. 

Momentum : [ p + p ( q . i i S ) 2 ]  = 0. 

Energy : 
Tangential velocity: 

[g(q. fiA2 + W r  - 1)) @/PI = 0- 

[q x iiJ = 0. 

Here the square brackets denote the change in the enclosed quantity across the 
shock discontinuity and ii, is the unit vector normal to the shock surface and is 
directed away from the bod;y. If the shock shape gs@, 5) is represented by 

(2.9) 

(2.10) 

Equations (2.5)-(2.10) am sufficient to determine all the shock properties in 
terms of the upstream flow conditions and the, as yet unknown, shock geometry. 
Messiter used this to  assess the orders of magnitude of the flow properties in the 
shock layer for a nearly plane shock lying close to  the blunt-faced body surface. 
The algebra for this is lengthy, and cannot be fully repeated here, but is given in 
more detail in Messiter (1963) and Hillier (1970b). Messiter proposed that the 
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true hypersonic limit y -+ 1, M, sin a -+ GO should be replaced by the condition 
8 -+ 0, where ?-I+- 2 1 

€ = -  
y + 1 (y + I) M z  sin2 a cos2p 

is the density ratio across a basio two-dimensional shock lying in the plane Tj = 0. 
He further proposed that in this hypersonic limit the various co-ordinates all 
scale in such a manner that the new stretched co-ordinates all remain of order 
unity as the shock layer thickness becomes vanishingly small. The resulting 
scalings, which are expected to hold at least in the outer part of the shock layer, 

$hen give x* = Z/E, (2.11) 

y* = g/E€tana, (2.12) 
x* = x/Cdtana, (2.13) 

where the y* scaling results from arguments concerning the continuity of stream- 
wise flow (see, also, Roe 1970) and the z* scaling ensures that the Mach angle of 
the flow in the shock layer (€4 tan a for 8 -+ 0) is of the same order as the sweep 
angle 8;  this latter condition is important and makes certain that the approxima- 
tion covers the cases of both attached and detached shocks. Thus, (2.13) also 
defines an appropriate sweepback parameter Q (say) given by 

Q = cot Ole+ tana.  (2.14) 

The projection of the angle of yaw p upon the plane 3 = 0 scales in a similar 
manner to give the parameter for yaw, T (say) : 

r = tan PIE+ sin a. (2.15) 

After slightly modifying Messiter’s arguments to include the effects of yaw, 

Z(X,Tj,X)/~m = cosa cosp+ (esin2a cosP/~osa)u*(x*, y*,x*)+O(s2) ,  (2.16) 
E(Z, ~ j ,  X)/Vm = esina cosp x v*(x*, y*, x * )  + O ( B ~ ) ,  (2.17) 

(2.18) w(~, y, Z ) / U ~  = e*sinP cosa x w*(x*, y*, x * )  + o(&, 

the flow variables in the shock layer are expanded in terms of B to give 

- 

( p  -pm)/kpmT72 = C, = 2 sin2a C O S ~ ~ [ I +  ~p*(x*, y*, Z*)I + O(e2), (2.19) 
(2.20) ~ ~ / p  = 8 + ~ c * ( % * ,  y*, z*)  + o ( E 3 ) ,  

where the zeroth-order term in each case is the appropriate basic Newtonian 
value, Evaluation of the shock boundary conditions (2.5)-(2.8) gives 

u,* = -ay:/ax*, (2.21) 

where 

(2.22) 

W: = r - ay,*/az*, (2.23) 

(2.24) 

(2.25) 

N = 2 + (7- 1) H: sin2a cos2/l. (2.26) 
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The thin shock layer equtktions are now derived by substituting (2.1 6)-(2.20) 
into the full equations of motion (2.1)-(2.3) and retaining only the lowest terms 
in E. This gives 

av* aw* 
ag* aZ* 

a,u* au* au* 
az* ay* az* 

-+- = 0, (2.27) 

--+v*-+w*- = 0, (2.28) 

(2.29) 
av* av* av* ap* 
ax* ay* az* aY*, 
-+v*-+w*- = -- 

atu* aw* aw* 
all:* ay* az* 
---+v*-+w*- = 0 (2.30) 

cT* = --(I+p")-.-- ( N - 2 )  (2u" fW*2), 
N (2.31) 

where (2.27) it, thenew reduced form for the continuity equation and (2.28)-(2.30) 
are the 5, Tj and X momentum equations respectively and IT*, the perturbation in 
density, is related to  the other flow properties by the energy equation for isen- 
tropic flow. Equations (2.27)-(2.31) must be solved subject to both the shock 
boundary conditions (2.21)-( 2.25) and also the body surface tangency condition. 
This latter condition is expressed by (2.4) and reduces in the thin shock layer 
limit to 

- (2.32) 

3. Discussion of the thin shock layer equations 
Before progressing further with the analysis the main points of the above 

equations will be discussed. In the thin shock layer theory the total derivative 
along a streamline is given by  

a a a 
ax* ay* ax* 
- +v* - +w* - 

so (2.28) and (2.30) show that both u* and w* remain constant for a fluid particle 
as it progresses through the E:hock layer; thus a streamline follows a particularly 
simple path whose projection on the plane y* = 0 is a straight line, parallel to the 
ray through the vertex given by z*/x* = w*. 

The correction p* to the hasic Newtonian pressure only enters the problem 
through the y*-momentum equation, showing that the pressure arises from 
centrifugal effects due to streamline curvature in the vertical plane and, of 
course, the jump conditions a h  the shock. The pressure may be deduced by direct 
integration of (2.29) once v* and w* are known, and these, in turn, are obtained 
from (2.27) and (2.30), which may be solved independently of therest. Solution of 
these two equations therefore provides the basic problem. The density correction 
g* is not required in the determination of p* ,  so, in this sense, the problem is 
analogous to one of constant density flow. However, this does not imply that the 
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flow is in fact at constant density, even to this approximation, since c* may be 
evaluated from (2.31) once u*, v* andp* are known. The value of u* is required 
only if a higher approximation (or (T* of course) is to be calculated. This is 
straightforward since u* is constant along a streamline and is therefore given 
by the value ut just downstream of the shock; determination of u,* follows im- 
mediately from the solution for the flow field. The Mach angle in the shock layer, 
as already stated, is proportional to €8 tan CI. and similarly the shock layer thick- 
ness is proportional to e tan a; on applying the thin shook layer approximation 
it is found that Mach disturbances propagate immediately from the body to the 
shock (in the limit B -+ 0). This point may be examined in more detail by con- 
sidering the equations of motion themselves. Equations (2.27)-( 2.30) are hyper- 
bolic everywhere, possessing characteristic surfaces across which there may be 
discontinuities in the derivatives. If these surfaces are defined by 

f (x*, y*, z*) = constant 

then (2.27)-(2.30) may be written in a new characteristic form; it is found that 
discontinuities in derivatives of v* and p* occur wherever 

aflay* = 0, (3.2) 

which is satisfied by surfaces normal to  the x*, z* plane. Discontinuities in 
derivatives of u*, v* and w* arise when 

(3.3) 

This is in fact the equation for a stream surface and expresses the fact that 
adjacent streamlines may have discontinuities in the derivatives of velocity 
across them. Returning to the first characteristic surface we note that dis- 
continuities in derivatives of v* are equivalent to discontinuities in stream 
surface slope or curvature and that these propagate through the shock layer 
normal to the plane x*, z*. Typically, therefore, any discontinuity in the curva- 
ture of the body surface is equivalent to a discontinuity in surface streamline 
curvature and will propagate to the shock as above. More specifically, the effect 
of the singularity in the body and streamline curvature at  the sharp leading edge 
for the detached shock case is also transmitted along the characteristic, so that 
there is a trace in the shock along which the shock curvature itself must be 
singular. This trace is then a simple projection of the wing planform. This is an 
important point which will be used in the discussion of the necessary leading-edge 
boundary conditions. 

4. Final formulation of the thin shock layer equations 
All the previous work, apart from that of Hillier (1970b)) was concerned with 

the conical problem and directly specialized equations (2.27)-(2.30) to this case; 
the full equations must obviously be used in the study of more general three- 
dimensional shapes but can be manipulated into a more convenient form. The 
equations contain x*, y* and x* as independent variables and since the main task 



31 2 R. Hillier 

of the calculation is to determine the flow field structure and the shock shape it is 
in fact best now to regard y* as a dependent variable and to replace it by a new 
independent variable. It is convenient to take this as the variable denoting a 
stream surface (7 = constant' say), which is therefore defined by (3.3), i.e. 

- (g)7,z*+v*-w* (s) aY * = 0. 
7. X* 

Obviously there is no unique set of stream surfaces; each surface comprises all 
those streamlines which pass through a particular trace in the flow field or, more 
conveniently, emanate from ;I, particular trace in the shock. The constant denoting 
a stream surface in its turn is set by the definition of this trace geometry. The co- 
ordinate system is modified further still, however. Since the conical problem is an 
important case, both in its own right and also because the flow at the vertex of 
the wings is a conical solution, it is useful to  employ the conical co-ordinate 
surfaces y*Ix* and .*I.*. The first of these, as already explained, is a dependent 
variable. The second, together with 91 and XI, provides the three independent 
variables for the problem. To fully define the notation, therefore, the necessary 
transformations are given b y  

x * + x ,  x*+xz ,  

5'*(X*,  r ,  z * )  -+ xy(x, 'I, 4 

ui*(x*, y", 2") -+ w(x, 7, x ) ,  

(4.2) 

(4.3) 

I 
P*@*, Y", Z*) -+ P@, r ,  z ) , }  and 

and so on. 

which are not needed to compute the pressure) now become 
The thin shock layer equations (excluding for brevity those for u* and g*, 

a y  av ayav  ap 
a? ax a7az a7 

aW aw 

x --- +(w-2)--+- = 0, 

x-+(w-2)- ax a2 = 0,  

(4.4) 

(4.5) 

-+(w-2)- a Y  a Y  = 0,  (4.7) 
a2 Y - V + X a x  

together with the shock boundary conditions 

us =ys+x-+7--1- aYs aYs (2) - 2 g, 
(%j2 2 

ax a2 

ax ax 
ps = 2yS+2x-+2r---1-- aYs 8% - -22-, 

(4.9) 

W, = r-ays/ax. (4.10) 

Now the body boundary condition is given by (2.32), which is a statement that 
the body surface is a stream surface. However, (4.1) is also a stream surface 
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I 
FIGURE 2. Streamline pattern in conical plane. 

equation and, when evaluated upon the body, must be identical to (2.32). We 
therefore obtain 

(4.11) 

5. The conical problem 
The conical equations of motion are obtained by first defining the stream 

surface 7 = constant to be a conical surface itself and then equating the deri- 
vative 8/ax to zero in the (4.4)-(4.11). It is convenient to consider the flow in the 
conical cross-plane (y, x ) .  Figure 2 shows a conical streamline traversing the 
shock layer; this is the projection of the conical stream surface in the y, x plane. 
The sidewash w is constant on this streamline (see $4),  sow = w(7)  only. There is 
also an arbitrary constant defining each streamline. Messiter fixed this, for con- 
venience, and without any loss of generality, by putting it equal to  the value of 
x at the point on the shock where the particular streamline commences. With 
these conical simplifications (4.4) reduces to  

where the subscript 0 denotes conical quantities throughout the remainder of 
this text. Since wo(7) 4 x ,  in general, (5.1) is integrated twice to give 

where A, and to are the shock stand-off distance and body thickness, respectively, 
on the centre-line in the transformed conical plane. Equation (5.2) is now dif- 
ferentiated with respect to x to obtain the streamline slope: 
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PICURE 3. Typical streamline pattern in the conical plane for 
the detached shock case. 

Now, the body surface boixndary condition (4.11) requires that the streamline 
slope on the body, (ayo/az)bo,iy, should equal the body slope dyoB/dzB. The first of 
these is simply given by evahating (5.3) on the body, i.e. at  z = zB, which gives 

The body slope, in its turn, it; obtained by evaluating (5.2) on the body and then 
differentiating the resulting equation for yoB with respect to zB. In this dif- 
ferentiation we must make use of the fact that there is a relationship between zB  
and 7 on the body, in that ev'ery position z, on the body has a particclar stream- 
line 7 associGted vith it. so that we write 

' B  = zB(7).  
Using (6 .5 ) ,  the surface slope gives 

(5.5) 

Equations (5.4) and (5.6) are then only equivalent if either 

or 
(5.7a) 
(5 .7b )  

Equations ( 5 . 7 ~ )  and (5.7 b )  constitute the appropriate body surface boundary 
conditions for the solution of tQe integral equation (5.6). The first condition ( 5 . 7 ~ )  
repeats the statement that any particular streamline may terminate (tangentially) 
in the conical plane at B spanwise position given by wo(q) = zB;  this is taken as 
the condition for a detached shock and gives flow patterns which are typically like 
those shown in figure 3. The conical plane gives the appearance of a two-dimen- 
sional flow but with some streamlines terminating upon the surface. Obviously 
this cannot happen in a steady two-dimensional flow, nor in the exact conical 
solution except at  certain singular points. It should be repeated that although 
some streamlines are terminating in the cross-plane they still possess a component 
of velocity directed along the wing chord. 
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For high values of Q (i.e. high aspect ratios) the shock wave eventually attaches 
along the leading edges. The streamline from the leading edge then has a constant 
sidewash velocity (wo = wo(Q) say) and will traverse the cross-plane until it  
terminates at  the position zB = wo(Q). Such a flow corresponds to the second 
boundary condition (5.7b)) which states that r] may remain constant over part 
of the body surface. Inboard of the position zB = wo( Q) the appropriate boundary 
condition must be reconsidered and it is this particular point which causes some 
difficulty in the solution of the attached shock problem. There is in fact a minimum 
value of Q below which a shock cannot be attached. This is determined by 
evaluating (5.6) at the leading edge for an attached shock (where y = zB = Q). 
After some manipulation (5.6) reduces to 

where the upper and lower signs refer to the positive and negative leading edges 
respectively. Since the sidewash must be reel the attached shock equation holds 
on the positive. leading edge provided that 

( 5 . 9 ~ )  

(5.9b) 

Equations ( 5 . 9 ~ )  and (5.9b) are the leading-edge conditions for an attached 
shock; various solutions to the appropriate equations have been discussed by 
Squire (19686)) Woods (1970) and Roe (1970, 1971) for wings with flat, diamond 
and caret cross-sections. 

At first sight the thin shock layer equations appear to have lost many features 
of the full equations of motion (see also Roe 1970), typically in that the former 
are hyperbolic everywhere whilst the character of the latter depends upon the 
particular flow region under consideration. However, the thin shock layer 
equations do reproduce many features of the full equations of motion, as well as 
providing some excellent comparisons with experiment, and it is particularly 
useful t o  consider the velocities in the shock layer vis-d-vis whether they are 
conically supersonic or not. This term, first used by Squire, Jones & Stanbrook 
(1963), refers to whether the component of fluid velocity normal to a ray through 
the vertex is supersonic or subsonic. Given that the speed of sound in the shock 
layer is e*sina C O S P ~ ~  it may be shown that the flow is conically supersonic 
provided that 

(wo-z)2 > 1, (5.10) 

i.e. either 
or 1 (wo-z) > 1 

(z-wo) > 1. 
(5.1 l} 

The two conditions determins, respectively, whether there is an outflow (i.e. 
towards the positive leading edge) or an inflow. To avoid confusion with the 
phenomena occurring in the exad flow these supersonic and subsonic regions 
will be referred to in the manner of Hayes & Probstein as supercritjczl or 
subcritical. 
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FIGURE 4. Two typical sidewasyh distributions for the detached shock case showing the 
singularity a t  the outwards critical line. 

If S l  falls below the value given by (5.9a) or (5 .9b )  then the shock must detach 
and the flow is subject to the body surface boundary condition (5.7a), as already 
stated. Some consideration must now be given to the necessary leading-edge 
conditions. It has already been pointed out that the expected effect of the 
leading-edge singularity in body curvature is to cause a singular trace in the 
shock, the locus of which is a simple projection of the wing planform. A singularity 
in shock curvature means, in its turn, a singularity in dw,(z)/dz at the shock. 
Differentiation of (5.6) showis that such a singularity occurs when 

(wo(z) - z )2 -  1 = 0, 

i.e. when the flow is critical (cree also Messiter and Hayes & Probstein). This bears 
a close resemblance to  the proposed subsonic-supersonic expansion about the 
leading edge for the real flow, and the appropriate root is therefore taken to give 
a critical flow outwards. Figure 4 includes two typical plots of u?,(z) for the 
detached shock case. 

The detached shock equations have been solved for a wide variety of cases. 
These include wings with flat, diamond and caret cross-section (Squire 1966, 
1968~)  and also yawed wings with flat, convex and concave cross-sections 
(Hillier 1970a, b) .  Furthermore, the last reference also considered cross-sections 
with slope discontinuities (tj-pically a wing-body configuration) by replacing the 
discontinuity with a short section of high curvature. 

6. The simply cambered wing 
It was shown in 3 3 that the sidewash w(x,  y, z )  is constant along a streamline. 

It was also pointed out that a stream surface 7 = constant comprises all those 
streamlines emanating from. a particular trace in the shock surface. It is con- 
venient, furthermore, to assume that in some cases this trace is the locus of all 
points of constant sidewash (i.e. the locus 8ys/az = constant). Therefore we have 
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that w(x, y, z )  = w(r) only for this particular case. With this simplification (4.4) 
and (4.7) reduce to 

aY -+x-+(w(q)-z)- a2y a2Y = 0, 
a7 aqax aq az 
y-w+x-+(w(~)-z)- aY = 0. 

ax az 

The first of these, equation (6.1), is rewritten as 

where G and Hare two arbitrary functions. When (6.4) is integrated with respect 
to  7 we obtain the basic stream surfaoe equation: 

where ?lS(x, z )  = constant is the trace in the shock whence a stream surface com- 
mences. Now, the body surface boundary conditions were derived in $ 4  and 
require that 

The general streamline slope in the cross-plane, ay/az, is obtained by dif- 
ferentiating (6.5) with respect to z and is given by 

3 = %-$G(g,) (w(~,)-z)H[x(w(~,)-z)] 
a2 ax az 

whilst the corresponding component of slope in the x direction is 

The values for the components of stream surface slope on the body are then 
given simply by replacing x and z by xB and zB in (6.7) and (6.8). The body slopes 
in these two directions are obtained by substituting x, aad z, respectively into 
(6.5) to give the equation for the body shape yB, and then differentiating this with 
respect to X, or zB. This gives 
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If (6.7) is now equated with (6.9), and (6.8) with (6.10)) in order to sacisfy the 
condition (6.6) we must have either 

(6. l l a )  

or w ( r ] )  = zB* (6.1 1 b)  

We again note that (6.1 la) implies that the stream surface may lie coincident 
with the body surface for some distance and that this corresponds to the attached 
shock case. The second equation (6.11 b )  repeats that streamline paths eventually 
become asymptotic to  the plane z = constant, and again this is taken as the 
detached shock condition. 

The arbitrary functions of’integration G and H are determined by equating the 
values of v at the shock as d.etermined both from the shock boundary condition 
(4.8) and also from the appropriate equation of motion (6.2). These are equal 
only if 

So far the analysis has been perfectly general and no geometrical limitations 
have been placed upon the lbody shape. Evaluation of G and H from (6.12) is a 
complicated task, other than for the simplest forms for vs(x, z ) ,  so that it is best to 
make some assumptions as to  its form. The easiest case is that when rs(x, z )  = z ,  
which includes all conical flows; it also, more generally, covers all those G a s e s  
where the wing planform is itself conical. This is because by setting ?js(x, z )  = z 
weare also stating that the sidewash at  the shock is thenafunction of z only which, 
in its turn, means that profiles of the transverse shock slope ays/az are self-similar 
for all values of x. This, therefore, places strict limitations upon any trace of 
curvature discontinuity in the shock. First, there may be a discontinuity along 
the line x = constant since this will not defy the requirements on the self- 
similarity of the transverse dope. This particular case corresponds to curvature 
discontinuities in the chordwise camber of the wing and will not be considered 
further here. The second possibility is that the trace lies along the line z = con- 
stant. Thus the discontinuity in shock curvature due to the wing leading edge 
can only lie along such a line, which implies, from $ 3 ,  that the wing planform is 
itself conical. 

Then, with the assumptioin that rs(x,  z )  = z, equation (6.12) gives 

I = (w(z )  - z ) ~  G(z) H[z(w(z)  - ~ ) 1 .  (6.13) 
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This shows that H[x(w(z) - 2): is constant ( = H ,  say) and that 

3 19 

G(z)  = l / H  x (~(2) - z ) ~ .  

The basic stream surface equation (6.5) for this particular flow then reduces to 

(6.14) 

(6.15) 

The shock shape y,(x, z )  is evaluated in terms of the sidewash at the shock, 
w,(x, z )  = w,(x), by using the boundary condition (4.10). Thus 

where A(x) and t ( x )  are the shock stand-off distance and body thickness, 
respectively, along the centre-line in this transformed plane. 

The two governing equations (6.9) and (6.10) now become 

and 

(6.17) 

(6.18) 

Equation (6.17) shows that ays/axn is a function of xB  only, so that the body 
shape is of the simple three-dimensional form 

YB(xB,  2B) = YOB(ZB) + Y ~ x B ) .  (6.19) 

Equation (6.19) defines what is termed as the simply cambered wing since it 
possesses a basic conical distribution of thickness, yOB(zB),  superimposed upon a 
surface, yg(xB),  cambered in the chordwise direction. The sidewash distribution 
for this wing is given by the solution of (6. IS) and depends only upon the conical 
component of geometry yon(zB), so that we can replace w(q) by w,(q), the equi- 
valent conical result. The thickness of the shock layer y,(x, x )  - yB(xB, zB) is 
obtained by evduating (6.15) on the body. This is again simply the conical 
result, SO that we have y,(x, Z) - yB(xB, zB)  = p,,(x) - yOB(xB) and A(%) = A,. After 
some algebra the pressure equation (4.5) can be integrated to give 

(6.20) 

that is, the basic conical term poB(xB) plus 8 relatively simple correction in terms 

The preceding results all demonstrate various important features of the simply 
cambered wing. The flow field structure is essentially determined by the conical 
geometry at the vertex, so that, within this approximation, whether the shock 
attaches along the whole line of the 1ea.ding edge or not depends only upon whether 
the conditions (5.9a) and (5.9b) are satisfied. Pressure distributions may be 
obtained for any of the conical shapes from the quoted references. The three- 
dimensional correction to the basic conical pressure in (6.20) depends only upon 

of X B .  
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FIGURE 5 .  Perturbation in the conical shock shape due t o  yaw. 

the local body geometry as opposed to the conical term itself, which is an integral 
over the cross-plane. Furthermore, the effects of cambering such a wing can be 
seen quite clearly and may be of use in optimizing the shape. It has been shown 
(Hillier 1970b) that the effect of yawing a conical wing is to decrease yos-yoB on 
the side of negative x B  and t o  increase it on the other; this holds for a wide variety 
of cross-sections and the i3ppropriate perturbation in shock shape from the 
unyawed value is given in figure 5 .  There is then a coupling between yaw and 
camber such that, typicalily, for the case d2yB/dx$ = 0 the induced rolling 
moment due to camber is stabilizing provided that dy,/dz, is negative. 

7. Perturbation solution for more general wings 
The analysis of the previous section was exact, within the context of thin shock 

layer theorj , up to (6.12), where a particular form was then assumed for the trace 
vs(x, z )  = constant in the shock along which the sidewash was constant. Ingeneral 
it is not possible to postulate the required form of r,(x,z) a priori, so that it 
becomes difficult to evalualje the functions G and H ;  for these more complicated 
problems a different approach has been used. The first departure from the 
method of the previous section is again to define a stream surface as emanating 
from a particular traoe in the shock but, in this case, to remove the restriction 
that this be a line of constant sidewash. Since each wing has a sharp vertex the 
flow, in the limit x + 0, corresponds to  a conical result which will be assumed 
already known. It is then convenient to consider the flow over the rest of the 
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body as a perturbation of this conical flow, the dependence on x being expressed 
explicitly by taking x as the perturbation parameter. This greatly simplifies the 
analysis required and also facilitates the tabulation of the final results. The flow 
properties therefore become functions of two variables only (7 and x ) .  It is best 
still to retain 7 as an independent variable but in some cases, for example, the 
non-conical planform, the surfaces x = constant may not be the natural co- 
ordinate surfaces for the problem. Let us consider the case where the body 
differs slightly from a conical wing both in the thickness distribution and also in 
the planform geometry. This shape can be written as 

m - 
Y B ( X B ,  ZB) = YOB(YB) + c xiyiB(YBL (7.1) 

where rB is a variable representing a straining upon the zB co-ordinate and is 
itself given by 

(7.2) 

The trace rB = !2 defines the leading edge, the value of !2 being given by the 
conical geometry at the wing vertex (i.e. !2 = cot BIcE tan a). It is reasonable to. 
assume a similar straining throughout the flow field and to express x as 

1 

m 

1 
zB = rB + c xixiR(rB). 

00 

2 = Y + z ZiZi (Y ,  y), 
1 

(7.3) 

where Y is now employed as the independent variable instead of x ,  and Z&Y, 7) 
evaluated upon the body is the xin of (7.2). We now set the constant on the trace 
qs(x, z )  by writing ys(x, x )  = Y. Thus, although an individual streamlin:: is still 8 

trajectory of constant sidewash w the stream surface 7 = constant, composed of 
all the streamlines originating at q,(s,x) = Y, is not necessarily a surface of 
constant w. 

In  order to be consistent with the expansions (7.1) and (7.3) the flow variables 
in the shock layer are written as 

where the subscript 0 refers to the basic conical solution at the vertex, corre- 
sponding to the conical body geometry term yoB(rB), and the other terms con- 
stitute higher order corrections to this result. When the expansions (7.4) are 
substituted into the thin shock layer equations (4.4)-(4.11) and the coefficients of 
the zi are identically equated to zero, a set of approximate equations results for 
each correction, i.e. value of i. The form of the expansions (7.4) points out certain 

21 F L M  54 
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features of this particular method even before we present these equations. The 
conical terms form the samo conical equations as those given in Q 5 except that 
r now replaces z;  thus disc0:ntinuities in streamline curvature must now propa- 
gate along the surface r = constant. This is only compatible with the  original 
discussion of 3 3 if the surface r = oonstant lies normal to the plane (x, x ) ,  i.e. if 
x i ( r , y )  = zi(r)  only or if zi(r) = ZiB(rB).  This is assumed henceforth. When de- 
riving the corredions in powers of x it is only necessary to  demonstrate the first 
one (i = I) since the manipulations for the higher corrections, although more 
complicated algebraically, are precisely similar in principle. The equations for the  
first, correction are 

( ~ ~ ( 7 )  -993% a { mq] (aYllall) + ar a (w1 2) 
21 -- a ’ ~ ~  (wo(q) - ,132 ( ] = 0, a7 ar ar (wo(7) - r )  

a 21 aY1 (wo(r) - v ( (wo(7) - r ) z ]  
+ v1 + v1 

zvl + ( ~ ~ ( 7 )  - r )  awl/ar = 0, 

2yl-v,-22, - ayo +(wo(7)-r) 
ar 

together with the shock boundary conditions 

dr dr 

d~~~ 22 dY1s - r  1 2r - - 2woSwls, ( ?r)-  dr ~1~ = 4 ~ 1 , - 2 7  

dz1dyo.S dY1S WIS = - - - - 
dr dr dr 

and the body surface tangency condition 

on Y1 = Y1H. 
body dr, 

Equation (7.7) integrates to give the basic sidewash relation 

%(r) 7)  = 4 ( r )  (wo(7) - r ) ,  

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7-9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

where Al(7) is an arbitrary function, introduced by the integration, which is 
treated as the unknown. Equation (7.5) is integrated twice to give 
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where G,(q) and G,(r) are two further functions of integration. It is unnecessary 
to evaluate these yet and an important point is raised if the body boundary 
condition (7.12) is now considered. The technique of equating the surface stream- 
line slope to the body slope has been discussed in § 6, so it is only necessary to  
present the resulting condition here; this gives 

Since C,(q) is finite the first two terms of (7.15) are independently zero as a 
result of the form of the basic conical solution. However, the last term of (7.15) is 
zero only if either 

or 
(7.16) 

If the detached shock boundary condition holds in the basic conical problem 
(i.e. wo(q) = rB) then dq/drB is not zero in general and we must therefore apply the 
condition zlB = 0 from (7.16). This means that there can be no straining of the 
planform in the detached shock case and that, therefore, the detached solution 
only applies to wings with delta planforms. When the attached shock conditions 
hold in the basic conical problem, however, we have that dq/drB = 0,  so that, 
from (7.16), there may be finite values of zlB. Thus we may obtain solutions for 
the flow in the vicinity of a curved leading d g e  with an attached shock wave. 
For the remainder of the analysis we shall consider only the case zlB = 0, i.e. the 
delta planform. With zlB = 0 the streamline equation (7.14) reduces to 

where the two functions of integration, yls(r) and G,(r ) ,  are determined by con- 
sidering the appropriate shock boundary conditions. Equation (7.1 I) shows that 

ylsw = A1 + 4 -1; 4 r 1 )  (wo(r1) - r1) dr1, (7.18) 

where A, and t ,  are the first corrections to the conical solution for the shock 
stand-off distance and body thickness, respectively, on the centre-line. Gl(q) is 
itself determined by equating the values of v1 at the shock as given by the equation 
of motion (7.8) and by the shock boundary condition (7.9); the result shows that 

G,(q) = - ~A~(T)/(WO(T) -7)'. (7.19) 

Equations (7.18) and (7.19) are incorporated into the expression for dylB/drB to  
give the governing equation : 

21-2 



324 R. Hillier 

Once the function A,(q) is known, plB(rB) can be obtained by integrating (7.6) 
subject to the shock condition (7.10). This is written, after considerable algebra, 
in a form amenable to numerical integration, so that 

= 2(Al+tl) (2+Yo,-Yo,) + P % d  (say), (7.22) 

where Xl(r, ql) and X2(vl, t )  are two complicated functions given in appendix A. 
It should be noted that (7.2!1) also holds for the yawed wing although the appro- 
priate parameter T does not appear explicitly. To evaluate (7.22) completely we 
need to know Al. This can be shown to be zero for the unyawed wing and obtained 
as a simple function of A,(z) for the yawed case. This derivation is shown in 
appendix B as it is not of immediate importance here. 

8. Some simple solutions to the integral equation (7.21) 
Despite the complexity of any general solution there are several comparatively 

simple results. The previouii section showed that A, = 0 for the unyawed wing 
which indicates that near the centre-line the shock profile is dominated by the 
conical terms. Not surprisingly, the centre-line pressure can be written with 
corresponding simplicity. Since A,(t) must be of order t for t + 0 (from equation 
(7.20)) and, similarly, since the conical sidewash term wo(t) must be of order t 
(from equation (5.3)), inspection of (7.21) shows that pfB(rB) must also be of 
order rB near the centre-line, so that 

The centre-line pressure correction on the unyawed wing then becomes 

PlB(0) = 2tl(2 + Ao). (8.2) 

Although the simply cambered wing was discussed earlier it should be noted 
that by setting dylB/drB = 0 we get A,(q) = 0, which gives in its turn 

These equations are the same as those €or the more general case of § 6. 
Another simple case concerns the conditions at the leading edge when the 

shock is attached. Considering only the unyawed case, for simplicity, equation 
(7.20) gives at  the leading edge (where q = rB = Q) 
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X 

FIGURE 6. Simple three-dimensional wing with the shock attached at  the leading edge. 

Since wl(!2) = Al(!2) (wo(S2) - 52) we obtain 

w1(52) = (%) (W,(Q) - w2 
dr, [ l - ( ~ ~ ( f t ) - Q ) ~ ] ’  

and the surface pressure at the leading edge is determined from (7.21). Noting 
first that 

(8.6) YlS - YlB = A1 + 4 -1; -4(r1) (4@1) - TI) dr1 

and that this is obviously zero at the lea.ding edge for an attached shock, the 
appropriate pressure term is 

The value of wo( 52) itself is given by the attachment conditions for the conical 
problem as was explained previously in 5 5 .  Equation (8.7) constitutes a useful 
check upon the theory since it may be compared with the pressure given by the 
exact oblique shock relations. Typically, for the configurationt shown in figure 6, 
equation (8.7) predicts that for a one degree change in dihedral angle, measured 
normal to the leading edge, the pressure coefficient changes by + 0.0043. This 
compares favourably with the exact value of + 0.0049. 

9. Numerical solution of (7.20) 
Generally the equation must be solved numerically, because of the complicated 

nature of the functions involved. A numerical solution for the detached shock 
case has been proposed by the author (Hillier 1970b); since it is essentially a 
standard procedure for integral equations there is no need to repeat many details 

t Assuming an incidence of 8’ a t  M, = 10 for a 70’ swept delta. 
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FIGURE 7. Lens :3ection wing showing typical section shapes. 

here. Numerical integration is not possible near the origin, because of the singular 
nature of the terms involved, and the solution is given in this vicinity by a power 
series of the form (B2) see (appendix B). Sufficiently far from the origin the 
integration is continued numerically, marching in small steps until the leading 
edge is reached. Generally a step size of about 0.001 is needed; this is the same as 
for the computations carried out for the coniczl case by Squire and Hillier. 

As yet the numerical calculation has been applied to  one case only. This is the 
lens section wing, typically of the form shown in figure 7, where the shape is given 
in the physical plane by 

g& = h ( i - = )  22 ( l - K Z / E )  

and i.1 the transformed plane by 

(9-1) 

y B  = to( 1 - r 2 / L 2 2 )  ( 1  - K Z ) .  (9.2) 

The basic conical wing for this problem is the convex section case computed by 
the author and which has already been extensively tabulated. The most con- 
venient way t o  express the surface pressure poB(rB) on such wings is to present it 
as a function of the reduced sweepback parameter fl and also a reduced thickness 
parametert c/Q. 

The first correction to  the pressure plB is likewise a function of c/Q and fl and 
so far results have only been computed for the particular case c/Q = 0.55. The 
distribution of p1B over the wing span at Q = 0.91 is shown in figure 8; the 
particular values of these two parameters correspond to the conditions of an 
experimental comparison which will be discussed later in $11. There is a singu- 
larity inplB (strictly inpfB) at the leading edge, this singularity being connected 

t The thickness parameter c = h / b d  = t o / Q  first used by Squire (1966) and Hida (1965), 
is a measure of the wing thickness in the transformed plane. 
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FIGURE 8. Distribution of ple  across span of lens section wing 
(a = 0.91, C/fi = 0.55). 

with the critical flow of the basic conical solution although no detailed investiga- 
tion has been made as to its behaviour. Thus the expansions (7.4) are not valid 
everywhere; most obviously they fail rapidly at the leading edge. UnfortunateIy 
the radius of convergence of these series can only be assessed by calculating 
higher order terms, which is in itself a complicated task. Therefore no practical 
limitation may be put upon xpIB, or more probably xpTB. However, it would be 
realistic to assume that the approximation cannot hold for values of xpFB much 
greater than unity. 

It is possible that such a numerical approach may also hold for the attached 
shock problem. However, no attempt has been made to evaluate this case, which 
is likely to  possess additional difficulties, as exemplified by the essentially dis- 
continuous solution for the basic conical problem (see Squire, Woods & Roe). 

10. Higher corrections for three-dimensional wings 
The perturbation technique has been demonstrated in the previous sections ; 

it requires only increased algebraic and numerical complexity to evaluate the 
higher order terms. Although no general results have been derived it in fact 
becomes obvious that each sidewash component wi(r, 7) will be characterized by 
an arbitrary function A,(r) (say), which will, in turn, be related to the appro- 
priate perturbation in the body shape by an integral equation. The algebra for 
the second correction has been performed by Hillier (1970b) and that for the next 
is by no means prohibitive although an explicit formulation for the pressure 
integral in terms of A,(q) is likely to prove so. However, the y-momentum 
equation could be integrated numerically, without the intermediate algebraic 
manipulations, although this would require a considerably larger computer store. 



328 R. Hillier 

FIGURE 9. Geometry of the simply cambered wings (c = 90.5 mm for 
- 4.6' camber; E = 90.0 mm for - 10.3' camber). 

The simply cambered caw has already been solved in 8 6; it  is possible, however, 
to derive the result induct:ively via the perturbation method and the relevant 
analysis is shown by Hillier (1970b). A further important result may also be 
proved by an inductive process; this relates to the conditions on the centre- 
line of any unyawed wing of conical planform and gives 

hi = 0, piB = 2(i + I) ti( 1 + &iAo), 
where ti is the ith correction to  the body thickness on the centre-line. Since the 
relevant analysis has not been presented elsewhere it is reproduced in appendix C 
for completeness. 

11. Comparisons of thin shock layer theory with experiment 
In  all the quoted referencles on conical flows there were a considerable number 

of comparisons made between theory and experiment which, almost without 
exception, showed excellent agreement. This was particularly encouraging since 
these results covered geometxies with a wide variety of cross-sections, conditions 
of both attached and detached shocks as well as the influence of yaw, and also 
values of the incident Mach number and angle of incidence which could hardly 
be considered hypersonic. Indeed, the initial requirement of the theory was that 
the parameter E be small compared with unity and yet there are many instances 
where there is in fact excellent agreement for values of order unity (see for 
example Squire 1968a, b ;  Hillier 1970a, b) .  The reason for this is unknown but 
in the checks upon the three-dimensional theory comparisons have again been 
made for shapes differing coinsiderably from the original requirement of a nearly 
plane surface as well as for large values of E. 

The first case compared withexperimenb is for the simply cambered wing since 
this does not contain the truncation errors inherent in the perturbation approach. 
There are two sets of results available, both of which were obtained by the author 
(Hillier 1970b, 1971) in the supersonic wind tunnels of the Cambridge University 
Engineering Department. The wing was originally a flat delta, with sweep angle 
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FIGURE 10. Comparison between theory and experiment for the -4.6" cambered wing 
(M, = 3.51, porn = free-stream stagnation pressure). 0, experiment; - , theory. For 
a = 33.3", E = 0.392, !2 = 0.674; for u = 17*8O, E = 0.890, !2 = 0.913. 

FIGURE 11. Comparison between theory and experiment for the - 10.3' cambered wing 
(M, = 3.51). -, two-term theory; - - - , three-term theory. For a = 33.3', E = 0.392, 
!2 = 0.674; for a = 17*8", 6 = 0.890, SZ = 0,913. 

8 = 74-55', which had then been bent in the chordwise direction. For the first 
case the resulting angle was - 4.6" and in the second case it was - 10.3'; the 
camber angle is defined in this case as the change in body slope from the vertex to 
the unit chord position. The geometry is more clearly defined in figure 9. The 
shape of the first wing, in physical co-ordinates, can be closely approximated by 
the equation 

ijB(Z, Z)/Z = - 0*0402(1/C). 

There was some difficulty in precisely defining the body shape for the second 
case, as explained in the references, and two closely matching forms have been 
suggested. These are 

j j B ( X ,  Z)/X = - 0*135O(Z/C) + 0.0295(Z/E)2 
? j B ( X ,  X ) / X  = - 0*1027(X/C) - 0.0480(X/C)2 + 0.0420(X/C)3. and 

Figures 10 and 11 compare the theoretical and experimental pressure distribu- 
tions along the centre-lines of the two wings when unyawed. Both give good 
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FIGURE 12. Comparison between theory and experiment for the 
-4.6' canibered wing (M, = 3.51, @ / E  = 1.0). 

agreement although the prledicted results tend to be low for the wing with 
- 10.3" camber. This may pastially reflect the fact that the planforni is no longer 
strictly delta but, having belen bent, is of the form 

z/z = b + O(x2). 

No allowance has been made for this in the comparisons shown. Further effects 
are due to  the low incidence of the trailing edge, which is only 7-5" for the lowest 
incidence tests, so that the flow is not strictly hypersonic there, and also because, 
at these low incidences, the model is no longer completely immersed in the 
accurately calibrated region of supersonic flow and is subjected to Mach number 
gradients of uncertain magmtude. The three-term series predicts a slight recom- 
pression at the rear of the wing whilst the two-term series shows no such trend. 
This discrepancy reflects a failure of the power series representation for large 
values of X / C  and demonstrates the need for a more refined method of model con- 
struction if the more detailed points of the pressure distributions are to be 
investigated. 

Figure 12 shows the spanwise pressure distributions at the rear of the 4.6" 
cambered wing whilst figures 13 and 14 show the corresponding distributions on 
the 10.3" cambered wing for both the unyawed and yawed cases. The particular 
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FIGURE 13. Comparison between theory and experiment for the - 10.3' cambered wing 

FIGURE 14. Comparison between theory and experiment for the yawed wing ( -  10.3" 
camber, M, = 3.51, Z/E = 1.0). For OL = 27.1°, /? = 4.95', E = 0.48, 7 = 0.27; for 

(M, = 3.51, 515 = 1.0). 

a = 18.4", /3 = 1.45', E = 0.84, 7 = 0.09. 

body shape used for this second wing is the three-term series; use of the two-term 
series does not affect the shape of the curve but only the overall pressure level. 
In all cases agreement between theory and experiment is close. 

The second experimental comparison concerns a wing with delta planform and 
diamond cross-section tested at a Mach number of 3.97 by the Royal Aircraft 
Establishment at Bedford (Moore, private communication). The wing has a 
polynomial distribution of thickness and is described in the physical plane by 

where h = 0.315 and b = 0.333. 
Figure 15 compares the theoretical and experimental pressure distributions 

along the centre-line at anincidence of 22". Agreement is good over the first 25 yo 
of the chord, where a large percentage of the pressure drop occurs, and then the 
theory tends to  overpredict the fall in pressure. No experimental points are 
included for the rear 40 % of the chord since these were effected by the model 
support. There are several factors to be considered when studying the theoretical 
result: first, there is a slight disagreement at the vertex and this basic error is 
reproduced along the centre-line. This discrepancy at the apex is a result of use of 
the conical theory and arises bemuse the model cross-section is very thick. Indeed 
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FIGURE 15. Pressure distribution along wing centre-line (typical 
wing sections also shown). M, = 3-97, u = 22". 

the thickness parameter G ( =  h/be*) is 1.28, which is in itself a severe test of the 
conical theory since it represents a considerable departure from a plane body. 
Not only is the body very thick, however, but there is a large camber along the 
centre-line which curves 20.2" from the vertex to the 40 yo chord position and 
39" over the whole chord. 

The third important comparison is for a wing tested at a Mach number of 4.0 
by Larcombe (private communication) at the National Physical Laboratory. 
The wing is of the 'lens' sectiion type described in (9.1) and in this case K = 0.5, 
h = 0.105 and b = 0.25. The wing was tested at  an incidence of 18", to give 
!2 = 0-91 and c/o = 0.55; the corresponding distribution of p I B  across the span 
has already been discussed in 5 9 and tabulated in figure 8. 

Figure 16 compares the theory and experiment for this case. The computed 
centre-line pressure, as has already been explained in 5 10, is exact within thin 
shock layer theory since the centre-line is a path of constant curvature. This 
implies a linear variation of pressure from the vertex and such a predidion is 
reasonably justified by the r c d t s .  Off the centre-line the solution is no longer 
exact but contains truncation errors of uncertain magnitude, together with the 
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FIGURE 16. Comparison between theory and experiment for the lens 
seotion wing (Ma = 4.0, a = 18'). 

failure of the theory near the leading edge. Certainly agreement is good along the 
ray ZIbZ = 0.42, where p:B is still small, but there is a large error along 

Z/bZ = 0.78, 

which is within the region of influence of the leading edge. 

12. Conclusions 
Thin shock layer theory has now been applied to a wide variety of problems in 

several papers. The conical case is particularly well documented and there is 
probably a more comprehensive range of results for such wings using this theory 
than for any other single approach. 

This paper shows some useful extensions of the technique to non-conical wings. 
The simply cambered case is clearcut, giving an exact solution, of particularly 
simple form, which agrees well with experiment. Although further experimental 
checking is obviously required this case is likely to prove an important result, 
especially in view of the large range of section geometries t o  which it is applicable. 

It seems unlikely that an exact solution, or more precisely a final integral 
equation, will be derived for the more complicated three-dimensional geometries 
and this paper has resorted to the assumption that the flow field is a perturbation 
upon a known conical flow. Again this exhibits some simple features in that the 
centre-line shock stand -off distance varies linearly from the vertex, irrespective 
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of the actual geometry, and t h e  centre-line pressure is a simple function of this 
stand-off distance. 

The benefit of a perturbation approach is that it facilitates the tabulation of 
results as well as simplifying the governing equations. This does not imply, 
however, that it is the only useful technique, or even the best, and there may be 
some advantages, in fact, in a direct numerical solution of (4.3)-(4.11), based 
upon a known conical flow field for x = 0, although such an approach has not yet 
been investigateci. 

Another point which has received little attention in the development of this 
particular wing theory is the validity of the thin shock layer expansions near the 
body surface. The conical problem exemplifies this in that streamlines terminate 
upon the surface in the cross-plane, whilst still satisfying the tangency condition, 
although such behaviour is only true at  particular singular points of the real flow. 
This results from the absence of a lateral pressure gradient term in the x-momen- 
turn equation; near the body surface, where the cross-flow velocity term is itself 
small, the pressure gradient is no longer insignificant and should strictly be 
retained. The requirement then is not just a single expansion throughout the 
flow field but an outer and inner expansion instead, matched, perhaps, by a third 
intermediate zone. Hayes & Probstein, as well as Roe (1970), have indicated 
approaches to this, whilst Melnik & Scheuing (1962) have considered a more 
general conical case. The essential point shown by these analyses, however, is 
that the surface pressure is still given correctly to order E ,  so that we do not need 
to resort to a more comp1ica;ted approach to calculate this. It is reasonabIe to 
assume that similar results hold in this three-dimensional analysis and that the 
main (initial) tests of this assumption should be by experimental comparisons. 

During the period of this research the author was in receipt of a grant from the 
Science Research Council. He would also like to express his gratitude to Dr L. C. 
Squire for many helpful discussions. 

where the prime denotes differentiation. 
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Appendix B. The determination of A, for the detached shock case 
If we consider a yawed wing, for which the basic conical solution is known, 

then the trace of wo(t) between the two leading edges must cross the line w,(t) = t 
at least once. This is a line of zero conical cross-flow and if we denote this particular 
value oft by co, it can be shown (see Hillier 1970a, b )  that w,(t) may be written as 
8 series expansion about (, of the form 

m 

1 
wow - Q = x - C O Y ,  tJ3 1) 

for which the f i s t  few coefficienbs uz have been calculated by Squire (1966) and 
Hillier (1970a, b) .  

The function A,($) can be written as a similar series about c,,: 
W 

AlV) = x q -  Q)i, (B 2) 

where the individual ai are obtained by substituting the series into the integral 
equation (7.20) and then equating coefficients of (t - <o)i. This gives a, = 0; if 
(7.17) is now evaluated on the body (au rB = c,) we obtain 

YlA50) - YlBKO) = O(YB - CO), (B 3) 

which is of course zero. If the wing is unyawed then A1 automatically becomes 
zero. If the wing is yawed the value A, is given simply from (7.18) by 

Appendix C. General term for the centre-line pressure correction 
To calculate this general (ith) correction we need to assess the orders of 

magnitude of the flow variables, and their derivatives, in all the preceding lower 
order corrections. These are obviously unknown, except in specific cases, and it is 
necessary to make certain assumptions as to their form which will then be 
justified aposteriori. Assume then that near the wing centre-line (i.e. as x ,  7 + 0) 
the solution is known for thejth correction (where 1 < j < i) and more specifically 
that 

Wj(Z,7 )  = 0(q2) ,  (C 1) 

yj@, 7) = tj + O ( d ,  (C 2) 

where tj is the j th  correction to the body thickness upon the centre-line in the 
transformed plane and the expression O(q) implies terms of the order 7, x ,  z2/q, etc. 
Noting, furthermore, that w,(7) = O(7) we may evaluate (4.6) for the ith correc- 
tion to give 
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The streamline structure is determined by using (4.4) for the ith term, which 
shows that 

which gives on integration 

The shock boundary condition (4.10) expresses yis(z) in terms of A&) as 

~ ( ~ ( 2 )  = Ai t- t i  - &(xi) (wo(z1) - dz,+ O(q) 

and G,( r )  may be rewritten, as before, by considering the values of ui at the shock 
as given both by the shock houndary condition (4.8) and also by the equation of 
motion (4.7). After some algebra these show that 

(C 9) G,(r) = -- (i + 2) A,(r)/(wo(s) - r )3  + 0(!ri). 
Thus the full equation for the streamline shape is 

The behaviour of A&) itself near the centre-line may be determined by 
evaluating (C 10) on the body (i.e. x = zB)  to give the equation for the body shape 
YiB: 

YiB(XI3) = Ai + ti - (WO(X1) - x J i  dz, 

Differentiating (C 11) with respect to zB gives the local body slope near the 
origin which is known to  be of order unity, so that, in its turn, Ai(r )  = O ( V - ~ + ~ ) .  
By reverting again to the equation for yiB it  can now be seen that Ai must in fact 
be zero, These latter resulte, show that both wi and yi conform with the original 
assumptions (C 1) and (C 2); since these assumptions are known to hold for the 
first correction as given in $ 5  a11 the preceding order-of-magnitude arguments 
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indeed hold for the general correction terms near the centre-line. It should be 
noted that the integrals of (C 10) also include terms of the form xlogz/y, but that 
these are themselves of order z. It is now a matter simply of algebraic manipula- 
tion to calculate ths centre-line pressure from (4.5) and (4.9), which give 

(C 12), 
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